数学理解的至善追求
柏拉图对数学理解问题及数学理解的层次有过非常深入的研究,他指出,理解是从假设(较低级的形式)出发,上升到绝对原理、上升到世界的最高目的——“善”的过程,是一个从形式过渡到形式、最后停留于形式的过程,并明确地指出,这种“善”是高于几何学推论的真正的理性。[1]他还进一步指出,数学中的“善”是一种发自人的经验但又脱离人的经验的纯形式的理想化的境界。他的这段精彩阐述不仅粗略地揭示了数学理解的一般过程,而且提出了数学理解的最高层次是达到“善”这一重要思想。不足之处在于他的“善”的概念非常笼统,对于“究竟是什么‘善’”、“‘善’包括哪些具体内容”等问题并没有给出明确的回答。也许是因为当时还没有数学思想方法这一概念,也许是因为其它原因,柏拉图并没有明确提出“数学理解的至善追求是数学思想方法的理解”这一命题。
此后,对“善”的研究最有影响的人物要数英国哲学家、数学家怀特海。1939年在美国哈佛大学所做的一次题为“数学与善”的演讲中,怀特海不仅对柏拉图始终强调的一个重要思想——“善”的思想(又称理念)予以了充分的肯定,而且对达到善的途径和善的最终状态进行了详细的阐述。他从“有限”(有限的识别力、有限的知识)与“无限”(无限的宇宙)的相互关系出发,提出了“善”是一种描述无限丰富的数学世界的理想模式的思想,他指出所谓“善”,是一种理想的东西,具有无限的性质,人们正是通过模式这种有限的东西而达到对无限的宇宙——“善”的认识的。这样,在柏拉图眼里抽象、玄妙、让人始终不可捉摸的“善”,通过怀特海精辟透彻的分析,使人们第一次对“善”有了一个具体而直观的认识,那就是“善”本质上是一种描述无限丰富的数学世界的理想模式。[2]从柏拉图与怀特海对“善”的阐述中我们也逐渐演绎出“数学理解的至‘善’追求是数学思想方法的理解”这一重要观点。为了更好地理解这一点,下面从四个方面来具体阐述。
一、从数学理解的本质看,数学思想方法处于数学理解的最高层次
数学理解是每一个从事数学教学和数学学习的人都无法回避的问题,但究竟什么是数学理解却众说纷纭。有人认为,“对一个事物本质的理解,就是指该事物的性质以一定的方式在学习者头脑中呈现并能迅速提取。而数学理解就是对数学知识的正确、完整、合理的表征。”[3]也有人认为,“一个数学的概念或方法或事实被理解了,那么它就会成为个人内部网络的一个部分。”[4]还有人认为,“学习一个数学概念、原理、法则,如果在心理上能组织起适当的有效的认知结构,并使之成为个人内部的知识网络的一部分,那么就说明是理解了。”[5]但若从联系的观点来进行考察则可以清楚地发现,从某种意义上来说,数学理解的本质就是要在新、旧数学知识之间建立一种非人为的、实质性的联系。
明确了数学理解的本质以后,我们再来进一步阐述“数学理解的最高层次是数学思想方法”这一观点。为了更好地阐述这一观点,有必要先明确一下数学思想方法的概念。关于数学思想方法,目前比较公认的说法有两种:其一,“数学思想方法是数学概念、理论的相互联系和本质所在,是贯穿于数学的、具有一定统摄性和概括性的概念。”[6]其二,“数学思想是指现实世界的空间形式和数量关系反映在人的意识中,经过思维活动而产生的结果。它是对数学事实与数学理论的本质认识。”[7]尽管两者的表述不尽相同,但基本上都把数学思想方法看作是人们对数学知识和方法所形成的规律性认识或基本看法,认为数学思想是在对较低水平的数学知识进行不断概括、反思基础上提炼出来的中心思想、原理或总纲。比如人们在对现实世界的数量关系进行抽象的基础上产生了自然数的概念以及自然数的运算法则等,对自然数进一步抽象又可以将自然数用字母来进行表示(比如用N表示自然数),这样就产生了字母代数的思想;而字母又可以进一步抽象为变量,这样又会产生变量的思想。
由此可见,数学思想方法不同于数学概念、数学命题等理性知识,它更多表现为一种整体的、直观的认识,它属于理性知识但又高于通常所说的理性知识,它是一种至“善”的知识,这种知识追求的是一种数学的统一美、和谐美、简洁美,这种知识作为一种高层次的思维形式它具有高度的抽象性,同时它又具有很强的直观性,它往往会在人的头脑中留下非常清晰的直观形象(常常被称为心理意象),会让人产生清晰明确、天经地义的(被怀特海称为自明的)感觉。若从联系的观点来看,数学思想方法本质上是构建各种数学知识有机联系的方法或线索。
这样我们就比较容易理解为什么数学理解的至善追求是数学思想方法的理解这一命题了。从联系的观点来看,数学理解是在数学知识之间建立联系,而要在众多数学知识之间建立联系又必须首先找到构建数学知识联系的方法或线索——数学思想方法。可以说,数学思想方法(作为线索和方法)既是构建联系的前提,同时又是构建联系的目标。这样,数学思想方法层次理解的本质就是要能够用某个思想方法作为线索将所要理解的知识“串联”起来,从而达到奥苏贝尔所提出的“综合贯通”境界。
二、从数学发展历史看,数学思想方法是数学发展的高级阶段
从数学发展历史看,数学思想方法经历了从模糊的感性认识到精确的数学刻划再到形成数学方法直到最后上升为理性的数学思想这四个发展阶段。
在萌芽数学时期,原始人的思维还仅仅处于主客体分化的边缘。其内部意识活动和外部信息活动的区分是极不确定、极不明晰的,原始人的思维以模糊的感性认识为主要形式。考古研究表明,在原始人那里并没有真正的数词,使用的仅仅是执行数词的功能词。而且数本身尚未形成同类序列,还只是一种“数-总和”的混合物。[8]比如,在很多原始部落,原始人只能认识到“5”,而大于5的自然数都统称为“多”。
进入常量数学时期,为了更加精确地刻划研究对象,科学进入了分门别类的研究阶段,人们开始利用演绎方法来探究事物之间的各种联系,其最典型的表现是数学的公理化和推理的严密化。
进入变量数学时期,数学的发展从对事物静态联系的考察进一步发展到对事物动态发展过程的考察阶段。而要全面、深入地考察事物的动态发展过程就必须准确把握事物的发展脉络。于是,数学从过去仅仅着眼于对具体数学知识的研究逐渐过渡到关注数学知识背后的数学思想并进一步发展为立足于数学思想发展变化的高度来认识数学知识这一新阶段,如用函数的思想、变换的思想来重新审视代数学和几何学的本质等。
到了现代数学时期,数学思想方法的研究又得到全新的发展。数学思想方法的研究逐渐从幕后走到了台前,现在,数学思想方法不再仅仅只是研究数学知识的手段或工具,数学思想方法已经直接成为数学研究的对象并迅速发展成为一门重要的数学学科——数学方法论。
为了更好地理解这一过程,我们通过极限思想的发展历史来说明这一点。
如果大家对极限的发展历史有一点了解的话,那么应该知道极限的发展大体经历了以下几个阶段:
1.运用模糊、直观的日常语言对极限思想进行定性的描述的阶段
极限思想起源于无限,最初表现为对无限这一概念的模糊、直观认识。在我国,《庄子·天下篇》中曾经用“一尺之棰,日取其半,万世不竭”形象地反映人们对极限的直观认识,而刘徽提出的“割圆术”则是极限思想的直接运用。在西方,无论是亚里士多德、德谟克利特等人提出的无限概念和无穷小量观念,还是攸多克索斯提出的穷竭法,抑或牛顿、莱布尼兹提出的无穷小概念,都还只是对极限的一种直观认识。尽管牛顿已经发明了微积分,但对极限的认识还没有脱离直观,还存在着很多模糊的地方。英国大主教贝克莱就曾对牛顿的无穷小概念提出了尖锐批评,并指出,“这些瞬时变化率既不是一给定的量,也不是无穷小的量,它什么也不是,它只是消失了的量的灵魂……。”[9]
2.借助于精确的数学语言对极限思想进行定量刻划阶段
微积分产生以后,人们发现微积分的基础存在很多漏洞。为了完善其基础,柯西采用“无限的趋近”、“任意小”等带有模糊性的自然语言来描述极限,但这仍然不能彻底解决微积分基础不严格的问题。后来,德国数学家魏尔斯特拉斯采用了精确的数学语言——“?着-N(?啄)”语言来刻划极限,从而把微积分奠基于算术概念的基础上,彻底解决了微积分中存在的漏洞。这样极限从原来模糊的定性描述逐渐转变为精确的定量刻划并因此而导致了数学分析的产生。
3.极限成为解决问题的一种重要方法
极限的产生不仅促进了微积分基础的严格化,而且还导致了诸如“?着-N(?啄)”语言、“lim”等一系列数学符号的产生。同时极限本身在解决问题中也显示了巨大的作用,用极限既可以求导、求积分、还可以解方程、求收敛级数之和等等,其应用涉及现代数学的众多分支,随着极限在各种问题求解过程中的广泛运用,极限已经成为解决数学问题的一种重要方法。
期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。
【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。
投稿辅导服务咨询与期刊合作加盟
陆老师联系QQ:
蒋老师联系QQ:
刘老师联系QQ:
联系电话:18015016272
17327192284
投稿辅导投稿邮箱:zgqkk365@126.com
期刊推荐
- 《校园英语》旬刊 省级 教育类学术期刊
- 《吉林教育》旬刊 省级 教育类学术期刊
- 《文教资料》 旬刊 省级
- 《科技风》半月刊 省级 科技类优秀期刊
- 《价值工程》旬刊 国家级 科技统计源期刊
- 《中国实验方剂学杂志》 半月刊 北大核心
- 《电影评介》半月刊 14版北大核心
- 《社科纵横》季刊 社科类优秀期刊
- 《求索》月刊 14版北大核心期刊
- 《中华建设》月刊 国家级 建设类优秀期刊
- 《继续教育研究》月刊 北大核心期刊
- 《网络空间安全》(信息安全与技术)月刊 国
- 《新闻传播》月刊 省级 新闻类优秀期刊
- 《财会月刊》旬刊 14版北大核心
- 《体育文化导刊》月刊 体育类双核心期刊
- 《机械研究与应用》双月刊 省级 机械应用类
- 《公路交通科技》 月刊 北大核心
- 《教学与管理》旬刊 北大核心
- 《新课程研究》旬刊 省级 教育类优秀学术期
- 《中国医药指南》 旬刊 国家级
- 《高教论坛》 月刊 省级
- 《课程教育研究》 旬刊 国家级
- 《语文建设》 旬刊 14版北大核心
- 《教育发展研究》 半月刊 双核心
- 《学术界》 月刊 双核心


