小学数学教学中渗透数学思想方法的策略
数学思想是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果。《数学课程标准(2011版)》指出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。从“双基”扩展为“四基”,凸显数学思想在义务教育过程中的重要地位。笔者从实践层面谈在教学中如何渗透数学思想。
一、在教学预设时精心挖掘教材中的数学思想
课堂教学活动,它是复杂和多变的,受到多个因素的影响,所以精心的预设,是上好一节课的必要条件。课前,教师既要全面了解学生的学情,又要深入钻研教材,二次开发使用教材资源,挖掘教材中蕴含的数学思想,进行有效的教学预设。如:人教版义务教育课程三年级下册第八单元《解决问题》的例1《用连乘两步解决问题》的教学设计。例1出示主题图,图中突显一个大方阵。每行有8人,共10行。两旁又显示两个不完整的方阵,每个方阵只显示一列半。备课时,笔者关注到它不是3个完整的方阵,可这幅图到底是什么意思?在备课中苦苦挣扎,苦苦思索,如果只是将它理解为一个方阵来教,未必不可,可总感觉在文本解读上,缺失了一些深度。再一次读图,这个图在美术上叫二方延续,不能只看成一个方阵,也不能单纯地看成三个方阵,这里蕴含了类似于“极限思想”,(因为人数是有限的,但可以比三个方阵多得多)有很多方阵,可以让同学们发挥想象,是一个开放性的主题图,方阵的个数并不唯一。但为什么在图的结构安排上,中间这个方阵放大而且清晰地呈现,而旁边的方阵是不完整的。最后理解为教材设计的意图,是为了让同学们明白,只要先求出一个方阵的人数,其余无论有几个方阵,用一个方阵的人数去乘几个方阵,就可以很顺利地解决。于是,教师预设:同学们,看到这幅图,你想提什么问题?生答后。师又问,那么你能马上解决哪个问题?(可以知道哪一部分的人数?)用什么方法计算?接着问,为什么主题图中间的这个方阵既完整又清楚地显示,而且可以直接求出这个方阵的人数,而其它两个方阵只显示一列多的人数,这表示什么?通过问题的精心预设,学生在解决问题的过程中,思维深度得到了进一步的提升。教材中蕴含的类似于“极限思想”也在不知不觉地渗透给学生。
二、在授课中悄然渗透数学思想
数学思想方法其实就是蕴含在数学知识之中,尤其是蕴含于每一个数学知识的形成过程中。当学生在学习每一个数学新知时,教师要尽可能提炼出蕴含其中的数学思想方法。要让学生充分体验数学思想,要引导学生对解决问题的策略和依据进行不断的思考、猜想、论证,并通过合作交流,实践探究,优化方法,去感悟数学思想方法。
例:《平行四边形的面积》一课,让学生围绕如何将平行四边形转化为已学过的图形这个问题独立思考、合作探究、猜想、论证。学生利用教师已经准备好的相关的平行四边形纸片材料,采取小组合作的方式进行探究活动。有的小组将它沿着平行四边形正中间的高剪下,转化为两个完全相等的梯形,再拼成一个长方形,从而根据长方形的公式推导出平行四边形的公式。也有的小组同学把它从一个角沿着高剪开,剪成一个三角形和一个梯形,再拼成一个长方形。还有的小组发现拼成的这个图形是一个正方形。最后根据已学过的正方形的面积公式推出平行四边形的面积公式。但老师并不仅停留于此,而是让学生说一说拼成的长方形的长和宽与原平行四边形的底和高有着怎样的关系。并让学生发现什么变了,什么没变。学生对这两个问题进行深入思考,结合手中操作的纸片,在探究解决这两个深层次的问题的过程中,理解了知识,也提高了数学思考、问题解决和数学探究的能力,老师悄然地渗透了“转化”的数学思想。
三、在拓展运用中提炼数学思想
除新知学习外,我们还应把“提炼数学思想”的重要阵地放在练习课和复习课上。这就要求教师在练习课堂教学过程中一定要把握好时机,既不能蜻蜓点水,也不能为“渗”而“渗”,应该精心设计好每一个练习。要以促进学生的“悟”为目的,有效地预设思想、体验思想、内化思想和提升思想,最终促进学生自我学习能力的内化提升。
二年级下册《观察、猜测、推理、验证》单元,新课结束后,笔者设计这样一道练习:小林、小英、小伟三位选手参加学校100米决赛。小林:我不是最慢的,小英说:我不是最快的。问题:你能判断比赛结果吗?
生:不能。因为小林不是最慢的,只能说明,他不是第三名,那可能是第一名或第二名;小英说不是最快的,那可能是第二名或第三名,这样重复了第二名。推不出来。
师:那要再增加一个什么条件,才能推出比赛结果。
生1:小伟比小林快。这样就可以推出第一名是小伟,第二名是小林,第三名是小英。
师:你们觉得,这位同学说得对吗?(生思考后,同意这位同学的观点。)
生2:还可以这样补充:小林比小伟快,小林第一名,小伟第二名,小英第三名。
生3:我不同意,因为小伟和小英并不清楚谁快。所以这个条件不行。
生4:小英比小伟快。说明小林第一名,小英第二名,小伟第三名。
生5:我同意。(全班没有不同意见。)
生6:那还可以说小林比小英快。结果小林第一名,小英第二名,小伟第三名。
生7:不行,小林第二名,小英第三名时,小林比小英快,小林第一名,小英第二名,小林也比小英快,这个条件不行。不知道和小伟的关系,不能推出比赛结果。
……
这样一道开放式的题型,学生的思维活跃了,充分地感受到数学推理思想在拓展练习中有着重要的作用。
总之,数学思想方法是数学知识的灵魂,是解决数学问题的指导思想和基本策略。数学教学过程中,应把数学思想方法的渗透做到润物细无声,而进行数学思想方法的渗透教学,应该是在启发学生进行思维的过程中通过一定的策略循序渐进地让学生获取。
期刊库(http://www.zgqkk.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导合作,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。
【免责声明】本文仅代表作者本人观点,与投稿辅导_期刊发表_中国期刊库专业期刊网站无关。投稿辅导_期刊发表_中国期刊库专业期刊网站站对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。
投稿辅导服务咨询与期刊合作加盟
陆老师联系QQ:
蒋老师联系QQ:
刘老师联系QQ:
联系电话:18015016272
17327192284
投稿辅导投稿邮箱:zgqkk365@126.com
期刊推荐
- 《课程教育研究》 旬刊 国家级
- 《网络空间安全》(信息安全与技术)月刊 国
- 《价值工程》旬刊 国家级 科技统计源期刊
- 《高教论坛》 月刊 省级
- 《法制与社会》旬刊 省级
- 《中国教育学刊》月刊 14版北大核心
- 《语文建设》 旬刊 14版北大核心
- 《中国绿色画报》 月刊 国家级
- 《社科纵横》季刊 社科类优秀期刊
- 《求索》月刊 14版北大核心期刊
- 《财会月刊》旬刊 14版北大核心
- 《艺术品鉴》 月刊 省级
- 《中华建设》月刊 国家级 建设类优秀期刊
- 《教学与管理》旬刊 北大核心
- 《当代经济》 旬刊 省级
- 《新课程研究》旬刊 省级 教育类优秀学术期
- 《文教资料》 旬刊 省级
- 《学术界》 月刊 双核心
- 《吉林教育》旬刊 省级 教育类学术期刊
- 《中国农业资源与区划》 月刊 14版北大核心
- 《继续教育研究》月刊 北大核心期刊
- 《财经界(学术版)》半月刊 国家级
- 《电影评介》半月刊 14版北大核心
- 《公路交通科技》 月刊 北大核心
- 《新闻传播》月刊 省级 新闻类优秀期刊


